Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Charge-assisted $\mathrm{N}-\mathrm{H} \cdots$ I and $\mathrm{C}-\mathrm{H} \cdot$. I hydrogen bonding in ($1 R, 2 S$)-1-(ferrocenylmethyl)-2-(methoxymethyl)pyrrolidinium iodide

Marcin Palusiak, ${ }^{\text {a }}$ Izabela Janowska, ${ }^{\text {b }}$ Janusz Zakrzewski ${ }^{\text {b }}$ and Sławomir J. Grabowski ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Crystallography and Crystal Chemistry, University of Łódź, Pomorska 149/153, 90236 Łódź, Poland, and bepartment of Organic Chemistry, University of Łódź, Narutowicza 68, 90136 Łódź, Poland
Correspondence e-mail: marcinp@uni.lodz.pl
Received 7 September 2004
Accepted 28 October 2004
Online 11 December 2004
In the title compound, $\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}\right)\right] \mathrm{I}$, the ferrocene moiety has an eclipsed conformation, with mean $\mathrm{Fe}-\mathrm{C}$ bond lengths of 2.031 (4) and 2.020 (6) \AA for the substituted and unsubstituted cyclopentadienyl rings. The pyrrolidinium heterocycle adopts an envelope conformation and has its 1and 2 -substituents in a relative trans disposition. Strong ($+/-$)-charge-assisted $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds are present. The crystal structure is also stabilized by weak C $\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

(S)-1-Ferrocenylmethyl-2-(methoxymethyl)pyrrolidine, (I a), is a useful starting material for the synthesis of enantiomerically pure chiral ferrocenes, which are important for asymmetric catalysis (Ganter \& Wagner, 1995). Since (Ia) is an oil, it could not be characterized by X-ray diffraction. However, we have found that the corresponding hydroiodide, (I), forms crystals suitable for crystallographic study. We report here the structure of (I), revealing the absolute configuration at the N atom and intermolecular hydrogen bonds influencing the crystal packing.

(Ia)

(I)

In (I), the cyclopentadienyl rings in the ferrocene moiety (substituted, $\mathrm{Cp} A$, and unsubstitued, $\mathrm{Cp} B$) are parallel [dihedral angle $=1.5(2)^{\circ}$]. The Cp rings are essentially eclipsed, with $\mathrm{C} n A \cdots C g A \cdots C g B \cdots \mathrm{CnB}$ angles $(n=1-5 ; C g A$
and $C g B$ are the centroids of the corresponding $C p$ rings) averaging approximately 3°. The $\mathrm{Fe} \cdots C g A$ and $\mathrm{Fe} \cdots C g B$ distances are 1.6423 (4) and 1.6464 (4) \AA, respectively, and the $C g A \cdots \mathrm{Fe} \cdots C g B$ angle is $179.2(2)^{\circ}$. The small but systematic differences between the $\mathrm{Fe}-\mathrm{C} n A$ bond lengths [2.025 (3)2.040 (4) $\AA]$ and the shorter corresponding $\mathrm{Fe}-\mathrm{C} n B$ distances $[2.011(5)-2.026(5) \AA]$, as well as the slight differences between the observed $\mathrm{C}-\mathrm{C}$ distances in the two rings, could be the result of greater overall displacement, including libration, for ring $\mathrm{Cp} B$. Methine atom C 6 is tilted slightly from the plane of its carrier Cp ring, toward the Fe atom. The $\mathrm{C} 1 A-\mathrm{C} 6$ bond forms an angle of $3.4(2)^{\circ}$ with the plane of ring $\mathrm{Cp} A$, while the $\mathrm{Fe} \cdots \mathrm{C} 6$ distance is 3.090 (4) \AA. The $\mathrm{C} 6-\mathrm{N} 7$ bond is in an antiperiplanar orientation with respect to the ferrocene moiety $\left[\mathrm{Fe}-\mathrm{C} 1 A-\mathrm{C} 6-\mathrm{N} 7=176.3(2)^{\circ}\right]$.

The five-membered heterocyclic ring adopts an envelope conformation with atom C8 at the apex. The ring puckering parameters (Cremer \& Pople, 1975) for the N7/C8-C11 ring are $q_{2}=0.307$ (4) \AA and $\varphi_{2}=-147.0(7)^{\circ}$. The corresponding asymmetry parameter (Nardelli, 1983) $\Delta S(\mathrm{C} 8)$ is 0.013 (2). The flat fragment of this ring, $\mathrm{C} 9 / \mathrm{C} 10 / \mathrm{C} 11 / \mathrm{N} 7$, forms an angle of $41.2(2)^{\circ}$ with the plane of ring $\mathrm{Cp} A$. The substituents at atoms N7 and C8 are equatorial and in a relative trans disposition. Torsion angles describing these features are presented in Table 1.

The molecule has two chiral centers, N7 and C8, and crystallizes in a chiral space group. The Flack (1983) parameter was refined, revealing the stereochemistry $1 R(\mathrm{~N} 7), 2 S(\mathrm{C} 8)$ (Fig. 1). Thus, protonation of the N atom in ($\mathrm{I} a$) proceeded in a diastereoselective manner, leading to the more stable trans arrangement of substituents at atoms N7 and C8.

Hydrogen bonding is important in the extended structure of (I). Table 2 lists all interactions with $\mathrm{H} \cdots A$ distances shorter than the sum of the van der Waals radii (Bondi, 1964) minus $0.1 \AA$. There are three interactions in which the iodine anion acts as an acceptor, while positively charged atom N7 and two of the C atoms bonded to it (C 6 and C 8) act as donors.

The $\mathrm{N} 7-\mathrm{H} 7 \cdots \mathrm{I}^{\mathrm{i}}$ [symmetry code: (i) $-1+x, y, z$] contact is an example of a charge-assisted hydrogen bond in which the

Figure 1
A view of the components of (I) (40% probability displacement ellipsoids).

Figure 2
Charge-assisted hydrogen bonding in (I). The molecules form chains along the [100] direction.
donor and acceptor are oppositely charged ions [(+/-)CAHB]. This type of interaction, also called a salt bridge (Gilli \& Gilli, 2000), is the strongest known hydrogenbond type. There are 1453 cases of $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonds in the Cambridge Structural Database (CSD; Version of November 2003; Allen, 2002), of which only about 14\% (201 cases) may be classified as ($+/-$)CAHBs. The average $(\mathrm{N}) \mathrm{H} \cdots \mathrm{I}$ distance is $2.958 \AA$ for $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ hydrogen bonding without charge assistance, and $2.899 \AA$ for (+)CAHBs, $2.855 \AA$ for $(-)$ CAHBs and $2.808 \AA$ for $(+/-)$ CAHBs. These differences in hydrogen-bond lengths are unsurprising, since the proton-acceptor distance correlates well with hydrogen-bond energy (Grabowski, 2003) and is often applied as a criterion for judging hydrogen-bond strength. On the basis of this distance, the $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ interaction in (I) may be considered to be relatively strong compared with all of the $\mathrm{N}-\mathrm{H} \cdots \mathrm{I}$ $(+/-)$ CAHB interactions found in the CSD. There are also two $\mathrm{C}-\mathrm{H} \cdots \mathrm{I}$ interactions in (I), with atoms C6 and C8 acting as donors. It is known that $\mathrm{Csp}{ }^{3}$ atoms have limited protondonating properties (Desiraju \& Steiner, 1999), but in this case proximity to the positively charged N atom may enhance the capacity of atoms C6 and C8 to take part in hydrogen bonding. These weaker interactions complete a six-membered ring, with second-level graph-set descriptor $R_{1}^{2}(6)$ (Bernstein et al., 1995), while the first-level graph-set descriptor $C(6)$ describes chains generated from a translation operation along [100], as shown in Fig. 2.

The crystal packing of (I) is also stabilized by weak C$\mathrm{H} \cdots \mathrm{O}$ interactions. In one of these, $\mathrm{C} 10-\mathrm{H} 102 \cdots \mathrm{O} 82^{\mathrm{ii}}$ [symmetry code: (ii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$], the molecules are related by a 2_{1} symmetry operation, which leads to the formation of $C(6)$ chains. A short H61‥O82 distance suggests the existence of a further intermolecular interaction, C6-H61…O82, graph set $S(6)$. Overall, there is a threedimensional network of hydrogen bonds of varying strength, which stabilizes the hydroiodide moiety in the crystal.

Experimental

The iodide salt was generated by reaction of (S)-1-ferrocenylmethyl-2-(methoxymethyl)pyrrolidine (Ganter \& Wagner, 1995) with hydriodic acid in acetone at 273 K for 1 h . X-ray-quality single crystals were obtained from a diethyl ether solution cooled to 278 K .

Crystal data

$\left[\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{5}\right)\left(\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}\right)\right] \mathrm{I}$
Mo $K \alpha$ radiation
$M_{r}=441.12$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.777(2) \AA$
$b=11.575$ (3) \AA
$c=20.160(5) \AA$
$V=1814.8(8) \AA^{3}$
$Z=4$
$D_{x}=1.615 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Rigaku AFC-5S diffractometer ω scans
14192 measured reflections
3559 independent reflections
2211 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.051$
$\theta_{\text {max }}=26^{\circ}$

$$
\begin{aligned}
& h=-9 \rightarrow 9 \\
& k=-14 \rightarrow 14 \\
& l=-24 \rightarrow 24 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 150 \text { reflections } \\
& \text { intensity decay: } 2 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0149 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.52 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.50 \mathrm{e}^{-3}$
Absolute structure: Flack (1983),
1508 Friedel pairs
Flack parameter $=-0.03(2)$

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

O82-C81	$1.407(4)$	$\mathrm{N} 7-\mathrm{C} 11$	$1.489(4)$
N7-C6	$1.505(4)$	$\mathrm{C} 6-\mathrm{C} 1 A$	$1.488(4)$
$\mathrm{N} 7-\mathrm{C} 8$	$1.522(4)$	$\mathrm{C} 83-\mathrm{O} 82$	$1.420(5)$
C81-O82-C83	$113.6(3)$	$\mathrm{C} 11-\mathrm{N} 7-\mathrm{C} 6$	$114.0(3)$
C11-N7-C8	$105.6(3)$	$\mathrm{C} 1 A-\mathrm{C} 6-\mathrm{N} 7$	$113.5(3)$
C6-N7-C8	$114.6(3)$	$\mathrm{C} 81-\mathrm{C} 8-\mathrm{N} 7$	$113.2(3)$
C6-N7-C8-C81	$-80.6(4)$	$\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11-\mathrm{N} 7$	$1.7(6)$
$\mathrm{C} 81-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$-152.3(4)$	$\mathrm{C} 6-\mathrm{N} 7-\mathrm{C} 11-\mathrm{C} 10$	$-147.2(4)$

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N7-H7 $\cdots \mathrm{I}^{\mathrm{i}}$	0.91	2.55	$3.454(5)$	170
C6-H62 I	0.97	3.05	$3.963(6)$	157
C8-H8	0.98	3.07	$4.000(7)$	159
C6-H61 \cdots O82	0.97	2.48	$3.138(7)$	125
C10-H102 \cdots O82 ${ }^{\text {ii }}$	0.97	2.56	$3.441(6)$	151

Symmetry codes: (i) $-1+x, y, z$; (ii) $-x, \frac{1}{2}+y, \frac{1}{2}-z$.

All H atoms were placed in idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-$ $0.98 \AA$, an $\mathrm{N}-\mathrm{H}$ distance of $0.91 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1989); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation, 1989); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics:

metal-organic compounds

PLATON (Spek, 2003); software used to prepare material for publication: PARST (Nardelli, 1996).

Support for this research was provided by the University of Łódź (grant No. 505/675/2004) (MP and SJG) and the State Committee for Scientific Research (KBN No. 3 T09A 138 26) (MP and SJG).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FA1094). Services for accessing these data are described at the back of the journal.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Cremer, D. \& Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
Desiraju, G. R. \& Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, ch. 2.2.2.4, p. 50. Oxford University Press.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Ganter, Ch. \& Wagner, T. (1995). Chem. Ber. 128, 1157-1161.
Gilli, G. \& Gilli, P. (2000). J. Mol. Struct. 552, 1-15.
Grabowski, S. J. (2003). J. Phys. Org. Chem. 17, 18-31.
Molecular Structure Corporation (1989). MSC/AFC Diffractometer Control Software and TEXSAN (Version 5.0). MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
Nardelli, M. (1996). J. Appl. Cryst. 29, 296-300.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

